Appendix

1 The Ricardian Example

We choose $A(z)=1-z^{2}$ and set $w_{l}=1, L=1, H=0.5, H^{*}=1, t^{*}=0$, and $\lambda=0.9$. The general equilibrium contains the following six equations:

$$
\begin{gather*}
1-z_{m}^{2}=\frac{\nu}{1+t}, \tag{A.1}\\
1-z_{x}^{2}=\nu, \tag{A.2}\\
\xi=\frac{\lambda z_{x}+1-\lambda}{\left(1-z_{m}\right) \lambda /(1+t)+\lambda z_{x}+1-\lambda}, \tag{A.3}\\
w_{h}=\left(z_{m} \xi+z_{x}(1-\xi)\right) \frac{0.9}{0.1 * 0.5}, \tag{A.4}\\
w_{h}^{*}=\left(\frac{\left(1-z_{m}\right) \xi}{1+t}+\left(1-z_{x}\right)(1-\xi)\right) \frac{0.9}{0.1 * 1}, \tag{A.5}\\
\nu=w_{h} / w_{h}^{*} . \tag{A.6}
\end{gather*}
$$

The first five steps in the Mathematica program are:
(1) Solve z_{m} from equation (A.1);
(2) Solve z_{x} from equation (A.2);
(3) Substituting the solutions of z_{m} and z_{x} into equation (A.3) to obtain ξ;
(4) Substituting the solutions of z_{m}, z_{x}, and ξ into equation (A.4) to obtain w_{h};
(5) Substituting the solutions of z_{m}, z_{x}, and ξ into equation (A.5) to obtain w_{h}^{*};

Note: If we substitute the solutions of w_{h} and w_{h}^{*} into equation (A.6), we obtain an equation that determines ν. Because the equation is complicated, Mathematica cannot solve ν explicitly as a function of t. So we use the "FindRoot" approach. The steps are:
(6) Set a tariff rate t;
(7) Set an initial value of ν. Mathematica finds the value of ν that satisfies equation (A.6).
(8) Substituting the equilibrium value of ν yields equilibrium values of other variables.

Note: Notations in the Mathematica program: $b \equiv \lambda, e \equiv \xi, w \equiv w_{h}, w n \equiv w_{h}^{*}$.

2 The Heckscher-Ohlin Example

We choose $\beta(z)=3 / 4+(1 / 4) \sqrt{z}$ and set $L / H=1, L^{*} / H^{*}=0.3, L^{*} / L=1, \theta=2 / 3$, and $t^{*}=0$. The general equilibrium contains the following seven equations:

$$
\begin{align*}
& \nu_{h}^{3 / 4+(1 / 4) \sqrt{z_{m}}} \nu_{l}^{1-\left(3 / 4+(1 / 4) \sqrt{z_{m}}\right)}=(1+t)(2 / 3), \tag{B.1}\\
& \nu_{h}^{3 / 4+(1 / 4) \sqrt{z_{x}}} \nu_{l}^{1-\left(3 / 4+(1 / 4) \sqrt{\left.\overline{z_{x}}\right)}=2 / 3,\right.} \tag{B.2}\\
& \xi=\frac{z_{x}(1+t)}{1-z_{m}+z_{x}(1+t)}, \tag{B.3}\\
& \omega=\frac{\xi\left(\frac{3}{4} z_{m}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)} z_{m}^{\left(\frac{1}{2}+1\right)}\right)+(1-\xi)\left(\frac{3}{4} z_{x}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)} z_{x}^{\left(\frac{1}{2}+1\right)}\right)}{\xi\left(z_{m}-\left(\frac{3}{4} z_{m}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)} z_{m}^{\left(\frac{1}{2}+1\right)}\right)\right)+(1-\xi)\left(z_{x}-\left(\frac{3}{4} z_{x}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)} z_{x}^{\left(\frac{1}{2}+1\right)}\right)\right)}, \tag{B.4}\\
& \omega^{*}=0.3\left\{\frac{\frac{\xi}{1+t}\left(\frac{3}{4}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)}-\left(\frac{3}{4} z_{m}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)} z_{m}^{\left(\frac{1}{2}+1\right)}\right)\right)+(1-\xi)\left(\frac{3}{4}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)}-\left(\frac{3}{4} z_{x}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)} z_{x}^{\left(\frac{1}{2}+1\right)}\right)\right)}{\frac{\xi}{1+t}\left(1-z_{m}-\left(\frac{3}{4}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)}-\left(\frac{3}{4} z_{m}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)} z_{m}^{\left(\frac{1}{2}+1\right)}\right)\right)\right)+(1-\xi)\left(1-z_{x}-\left(\frac{3}{4}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)}-\left(\frac{\left.\left.\left.\frac{3}{4} z_{x}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)} z_{x}^{\left(\frac{1}{x}+1\right)}\right)\right)\right)}{(\text { B. } 5)}\right)\right.\right.}\right\}, \\
& \nu_{l}=\frac{\xi\left(z_{m}-\left(\frac{3}{4} z_{m}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)} z_{m}^{\left(\frac{1}{2}+1\right)}\right)\right)+(1-\xi)\left(z_{x}-\left(\frac{3}{4} z_{x}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)} z_{x}^{\left(\frac{1}{2}+1\right)}\right)\right)}{\frac{\xi}{1+t}\left(1-z_{m}-\left(\frac{3}{4}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)}-\left(\frac{3}{4} z_{m}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)} z_{m}^{\left(\frac{1}{m}+1\right)}\right)\right)\right)+(1-\xi)\left(1-z_{x}-\left(\frac{3}{4}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)}-\left(\frac{3}{4} z_{x}+\frac{1}{4} \frac{1}{\left(\frac{1}{2}+1\right)} z_{z_{x}}^{\left(\frac{1}{2}+1\right)}\right)\right)\right)}, \\
& \omega / \omega^{*}=\nu_{h} / \nu_{l} . \tag{B.7}
\end{align*}
$$

The first five steps in the Mathematica program are:
(1) Solve z_{m} from equation (B.1);
(2) Solve z_{x} from equation (B.2);
(3) Substituting the solutions of z_{m} and z_{x} into equation (B.3) to obtain ξ;
(4) Substituting the solutions of z_{m}, z_{x}, and ξ into equation (B.4) to obtain ω;
(5) Substituting the solutions of z_{m}, z_{x}, and ξ into equation (B.5) to obtain ω^{*};

Note: If we substitute the solutions of ω and ω^{*} into equations (B.6) and (B.7), we obtain a system of two equations that determine ν_{h} and ν_{l}. Because the equations are complicated,

Mathematica cannot solve ν_{h} and ν_{l} explicitly as functions of t. So we use the "FindRoot" approach. The steps are:
(6) Set a tariff rate t;
(7) Set initial values of ν_{h} and ν_{l}. Mathematica finds the values of ν_{h} and ν_{l} that satisfy both equations (B.6) and (B.7).
(8) Substituting the equilibrium values of ν_{h} and ν_{l} yields equilibrium values of other variables.

Note: Notations in the Mathematica program: $e \equiv \xi, w \equiv \omega, w n \equiv \omega^{*}, v \equiv \nu_{h}, u \equiv \nu_{l}$.

