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CONSUMER DECISIONS ACROSS SEEMINLY DISPARATE CATEGORIES: 

LATENT-TRAIT SEGMENTATION 

ABSTRACT 

This research takes a first step in modeling latent processes that govern consumer decision 

making by examining consumption across seemingly disparate categories. Marketing activities 

today are coordinated in a variety of categories and in a variety of formats, and consumers 

naturally shop around a globe of unrelated product categories that are beyond the traditionally 

defined “shopping basket”. We propose a hierarchical multinomial processing tree model to 

empirically examine the driver, which is defined as the “latent trait”, which governs consumer 

choices across five seemingly disparate product categories: media consumption, automobile 

purchases, financial investments, soft drinks and cell phone plans through a dataset consisting of 

5,014 consumers in the United States. We further investigate how consumer behavior 

systematically varies from one category to another and finally suggest new approaches to 

segment and profile consumers based on latent traits across multiple categories. In doing so, this 

paper contributes to the consumer decision literature in three ways: 1) theoretically, the latent-

trait approach provides rich support in examining the underlying psychological processes; 2) 

methodologically, the relative merits of models with continuous versus discrete representations 

of consumer heterogeneity are discussed; and, 3) substantively, new insights on targeting and 

profiling based on latent processes rather than observed behavior are presented with respect to 

managing across seemingly unrelated product categories. 

Keywords: Seemingly Disparate Categories; Segmentation; Latent Trait 
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1 INTRODUCTION 

“To look at a leopard through a tube, you can only see one spot.”  

      -From Ancient Chinese Idiom (422 AD) 

The task for marketing managers today is increasingly complex and customer-oriented. 

Traditional practice involves brand managers planning and organizing marketing activities 

around individual brands, then shifting towards category managers who coordinate purchasing, 

merchandising and prices of a set of brands within a category (Zenor 1994) and occasionally 

across categories within the “market basket” (Bell and Lattin 1998; Seetharaman et al. 2005). 

Most recently, as marketing practice embraces customer orientation and customer management, 

managers note that consumer purchases are never just limited to a few brands, or grocery 

shopping basket. In fact, consumers naturally shop around a globe of disparate product 

categories that are more complex and diverse than the traditionally defined market basket in 

retailing research. Here, the term “disparate” is similar to “non-comparable” (Johnson 1984), 

which describes the degree to which choice alternatives can be represented by the same attributes, 

but offers a broader and more generalized description of categories that are utterly dissimilar and 

difficult to compare with each other than merely a function of the number of common and 

distinctive features associated with alternatives as in comparability (Tversky 1977). For example, 

consumers drive certain cars and listen to certain radio channels; they prefer certain soft drinks 

and behave in certain ways when it comes to financial investments. These categories have 

typically been studied in isolation, but they collectively reflect a more complete and realistic 

picture of consumer demand rather than steady snapshots for consumer behavior as in previous 
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research. This research aims to examine consumer choices across seemingly disparate product 

categories in order to specify a fuller model of the consumer demand problem.  

Insights from understating behavior across seemingly disparate categories would be 

increasingly relevant in today’s retail context for customer valuation, segmentation, cross-sell 

and resource allocation (Reinartz and Kumar 2003; Shah and Kumar 2008). Marketing activities 

are coordinated in a variety of categories and in a variety of formats. Supermarkets such as Wal-

Mart make assortment decisions for product categories that are not closely related, including 

consumer electronics, furniture, apparel, grocery and many others. The rewards from loyalty 

programs such as Air Miles can be accumulated or redeemed in many outlets, ranging from 

gasoline services and package holidays to supermarket shopping. Brand extension efforts make 

Virgin Group a conglomerate that builds presence across different business areas. Moreover, due 

to the growing ability to track consumer purchase patterns cross categories using CRM and web-

based tools, Internet retailers (such as Amazon and Groupon) and platform providers (such as 

Facebook) are proactively managing across a wide assortment of categories and having access to 

a rich database of consumer behavior that was not able to be tracked traditionally. Managers are 

urged to embrace the challenge of creating a broader and richer description of customer behavior 

and understand the deeper underlying process of consumer decision making.     

Identifying and assembling purchase patterns from individual categories can assist in 

segmentation and targeting. To date, behavioral-based segmentation focuses primarily on “what 

consumers did” rather than “why they did it”. The objective of this research is to help managers 

get at the “why” question by studying and inferring the latent processes from observed 

behavioral data that are accessible to today’s firms (rather than incurring the additional cost of 

augmenting with experiments, survey data or brain scans). The genesis is that consumers are 
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alike because they share similar thought processes, not because they display similar observed 

behavior as assumed in traditional segmentation approaches. Nevertheless, one reason that 

previous research on cross-category behavior often restricts to related categories is due to data 

availability. It is difficult to get access to customer purchase data across a wide range of 

seemingly disparate categories and infer consumers’ underlying processes based on observed 

behavioral patterns. Our goal is to build a theory-driven model that helps managers to understand 

and measure the impact of the underlying processes that explain systematic co-variations across 

seemingly disparate categories based on behavioral data.   

In fact, the process of aligning decisions across seemingly unrelated categories occurs 

naturally and bilaterally. Consumers constantly make choices for every aspect of their lives, from 

complex decisions such as which car to purchase, in which stock to invest, and to which cell 

phone plan to subscribe, to more routine ones such as which soda to drink and which television 

channel to watch. There could be many types of underlying processes that explain co-variations 

across categories. One famous example in the marketplace, originally to illustrate the power of 

data mining (Financial Times of London, Feb 7
th

, 1997), is of “Beer and Diapers”. It is observed 

that beer and diapers, two categories which appear to be unrelated, tend to be purchased together 

simultaneously by male customers. Traditional models on multi-category choice behavior would 

only capture this phenomenon through demographics and random errors, and fail to recognize 

the deeper rationale that male customers seek convenience when making shopping trips. Another 

example is that we may observe certain consumers tend to be “innovators” of many categories as 

they always prefer the latest new products or services, ranging from apparel and cell phones to 

automotives. We may also observe that certain consumers are more inclined to purchase or hold 

multiple types of products, either because of the need for variety-seeking, or because of a limited 
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capability to reach a single decision (Dowling and Uncles 1999). In this case, people are alike 

not only because they coincidentally display similar observed behavior but also because they 

share similar latent decision processes. While traditional segmentation research attempts to group 

people of similar observed outcomes together and explain their behavior with a same-response 

coefficient, assuming that “birds of a feather flock together” (Desarbo et al. 2004; 2006; Heilman 

and Bowman 2002), this research provides a first step in categorizing customers as a set of 

value-based process parameters for theory-driven segmentation and profiling exercises.  

This research contributes to the literature in three ways. First, it takes a first step in 

modeling a complete picture of consumer decision problems by examining consumption across 

seemingly disparate product categories. Second, it investigates the latent processes that govern 

consumer decision making across decision stages and across categories to advance our 

understanding in both dimensions of customer behavior: the breadth of their consumption 

portfolio, and the depth of their latent decision processes. Third, it provides richer insights on 

targeting and profiling based on continuous latent processes rather than discrete observed 

behavior. Specifically, we propose a hierarchical multinomial processing tree model to 

empirically examine the underlying processes, which are defined as the “latent traits” that govern 

consumer choices across five seemingly disparate product categories
1
: media consumption, 

automobile purchases, financial investments, soft drinks and cell phone plans through an 

asyndicated dataset consisting of 5,014 randomly selected consumers in the United States.  

The model is estimated using Bayesian methods with weakly informative hyperprior 

distribution and a Gibbs sampler based on two steps of data augmentation. While the latent 

process structure remains the same across these categories, we further investigate how consumer 

behavior systematically varies from one category to another and finally suggest new approaches 

                                                           
1
 I will explain the selection of categories in the data section. 
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to segment and profile consumers based on collection of continuous latent traits (rather than 

discrete observed behavior) across multiple categories. Lastly, we compare the latent-trait 

approach with the latent-class approach and identify conditions under which they may yield in 

similar or dissimilar results from a data-driven perspective.   

Latent trait models have a long history in psychometric studies of psychological 

constructs such as verbal and quantitative ability (see, e.g., Lord and Novick 1968; Langeheine 

and Rost 1988) but have not received much attention in the marketing field. Essentially, any 

person-level difficult-to-observe continuous parameters, whether well-defined or undefined, 

goal-oriented or heuristic-based, can all be considered as latent traits. It can take place at many 

levels of decision making. For example, at the product category level, need for convenience is 

the latent trait that explains the phenomenon of beer and diapers. It is highly likely that male 

consumers would exhibit the same trait when choosing brands and products, such as choosing 

the most accessible diaper brand on the shelf, or choosing the beer that they are most familiar 

with.  Furthermore, decision processes can often be casted into a tree model in a natural and 

principled manner, and latent traits can be best viewed as the branches that lead to decision 

nodes at each stage.  Depending on the firm’s interest in key decision variables and availability 

of data, the tree structure can be adapted in a specific setting. For example, if managers are 

interested in the impact of “need for convenience” on store and assortment choices, then the tree 

will start from a consumer who chooses between the more “convenient” stores (i.e., stores within 

a certain distance) and less convenient stores, then chooses between more “convenient” 

assortments (e.g., shelf allocation in the case of beer and diapers). At each stage, the latent trait 

of “need for convenience” determines the consumer’s paths in taking upper or lower decision 

branches. If a firm’s interest lies in capturing the latent trait of “innovativeness” in category and 
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brand management, then the decision tree will start from a consumer choosing between the 

newer (more innovative) and more established product category, followed by decisions in brands, 

and finally in products.       

As noted earlier, many types of latent traits may affect consumer decision making and 

this research is at best offering a process for studying the impact of latent traits. For exposition 

and without loss of generality, I examine one specific type of latent trait, which is defined as 

“polygamy”. Polygamous loyalty has been documented in the literature to describe the behavior 

of “divided loyalty” among a number of brands (Dowling and Uncles 1997; Bowman 2004). 

Polygamy is the tendency of individuals to seek multiple types of products, services, or brands, 

as opposed to holding to a single one. It is an idiosyncratic trait that a consumer has and, when 

manifested, it can lead to interior solutions where their constrained utility is maximized on the 

budget constraint with strictly positive quantities of two goods (i.e., multiple goods are chosen 

from the alternative set). It is noteworthy to distinguish polygamy from variety-seeking behavior, 

which can be viewed as a subset or outcome of polygamy that describes the switching behavior 

among brand/product/service alternatives, as opposed to loyalty (Khan et al. 1986). While 

consumers engage in variety-seeking activities merely as a result of satiation (Kim et al. 2002), 

they may seek polygamy for various reasons such as sensation, diversification, convenience, 

security, complementarity and/or inability to reach a single decision. Polygamy may take place at 

many levels of the decision process. For example, at the product level, investors may hold 

different stocks as a portfolio; at the brand level, diners may order different brands of wines at 

one occasion; at the product-type level, consumers may want both a laptop and a desktop; and 

finally, at the product-category level, consumers almost always hold multiple categories. In 

addition, depending on the product category, consumers are likely to experience a satiation effect 
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or “heavy-user” effect when moving across layers of decision processes. For example, if 

consumers purchase multiple types of automobiles, they may be less likely to purchase multiple 

brands within each type. Nevertheless, for media consumers who enjoy the large variety of 

website choices that Internet offers, it is more likely that they will also subscribe to multiple 

television channels at a time. Such variations across levels of decision processes and product 

categories allow better identification when estimating the parameters and enrich potential 

insights that latent trait can generate. 

 In summary, by testing one specific latent trait of “polygamy”, this research takes the 

first step to empirically investigate the continuous latent processes that govern consumer 

behavior across seemingly broad and disparate product categories and across different decision-

making stages to advance understanding in both dimensions of customer behavior: the breadth of 

their consumption portfolio and the depth of their latent decision processes. Specifically, this 

research addresses: 1) whether latent trait has an impact on consumer decision making and the 

magnitude of such impact, if any; 2) how a latent trait is manifested across different levels of 

decision making; and 3) how the effect of a latent trait varies across seemingly disparate 

categories. In doing so, this research contributes to the consumer decision literature in three ways: 

1) theoretically, the latent-trait approach provides rich support in examining the high level 

processes; 2) methodologically, the relative merits of models with continuous versus discrete 

representations of consumer heterogeneity are discussed; and 3) substantively, by providing new 

insights on targeting and profiling with respect to managing across seemingly unrelated product 

categories.          

The remainder of this essay is organized as follows. Section 2 reviews related streams of 

literature and our general approach to modeling consumption across seemingly disparate 
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categories. This is followed by the empirical model in Section 3, a description of the data 

(Section 4), and estimation and results in Section 5.  We then conduct a latent-class segmentation 

analysis ex-post based on the first stage latent trait parameters in Section 6, and conclude with a 

discussion of key findings, implications for management, limitations and directions for future 

research in Section 7. 

2. LITERATURE REVIEW 

Marketing research on consumer choice across seemingly disparate categories and latent 

traits is scarce. Nevertheless, related literature on cross-category models of consumer choice and 

decision making processes has been popular. Consistent with the shift in practice, marketing 

research has progressed gradually towards examining the full picture of decision problems. The 

literature on cross-category behavior evolves from standard single category choice models with 

homogenous demand specifications and independent category decisions (McFadden 1980; 

Guadagni and Little 1983; Bucklin and Gupta 1992; Berry 1994) to  models addressing 

correlations between two or three related, by and large complementary product categories 

(Erdem 1998; Manchanda et al. 1999; Heilman and Bowman 2002; Chung and Rao 2003), and 

most recently to multi-category choice models (aka market basket models) that describe purchase 

behavior in typically eight to ten categories within grocery shopping trips (Ainslie and Rossi 

1998;  Bell and Lattin 1998; Seetharaman et al. 2005; Mehta, 2007). In doing so, this stream of 

research uncovers the correlations in cross-category purchase outcomes and marketing mix 

sensitivities from complementarity, consumer heterogeneity, state dependence and coincidences. 

The genesis is that if sensitivity to marketing mix variables is a common consumer trait, then one 

should expect to see similarities in sensitivity across multiple categories (Ainslie and Rossi 

1998). For example, a low-income household might be price sensitive in many product 
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categories. However, the categories studied are usually within the grocery shopping basket and 

are, by nature, closely related (e.g., toothbrush and toothpaste). The reality is that consumer 

purchases are never limited to a grocery context and customer behavior is likely to vary 

systematically across product categories as a function of more than the sources of cross-category 

variations listed above. For example, the joint purchase of beer and diapers would have been 

incorrectly picked up as mere coincidences by previous research. Hence, research that examines 

consumption across seemingly disparate categories would provide a more realistic and 

generalized approach in studying cross-category behavior. In order to study behavior in such a 

broad and comprehensive consumption context, managers need a more sophisticated approach 

that describes and provides a deeper understanding on consumers’ underlying preferences or 

processes that govern choices. 

There are many approaches, such as attitudinal or behavioral, that one can use to study 

disparate categories. Decades ago, researchers typically looked at choices at an aggregate level. 

Attitudinal research and survey studies on consumer “Values, Attitudes, Lifestyles” (VALS, 

VALS2) have long been interested in addressing such problems. While this stream of research 

often suffers from implementation difficulties such as smaller sample sizes, greater collection 

efforts, and sometimes self-report bias, they provide an intriguing angle to understanding person-

factors (though mostly on attitudes and aggregated discrete segments or labels) from consumers’ 

perspectives. On the behavioral side, techniques such as grouping or conglomeration are 

available to analyze data from aggregate responses and decompose the tabular frequencies into a 

set of latent classes or segments (Desarbo et al. 1993; Wedel and Kamakura 2000). A limitation 

of such an approach is that it relies on brute-force statistical fits rather than a utility-maximizing 

framework, and therefore is less theoretically realistic (Wedel et al., 1999). Furthermore, it 
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imposes a fixed number of latent classes and assumes each person to be a member of one latent 

class. This is often too restrictive and difficult to interpret. In many applications, a continuous 

distribution of a parameter value that accommodates heterogeneity across consumers is more 

realistic (Andrews, Ainslie and Currim 2002; also see Andrews, Ansari and Currim 2002).  

Most recently, there is a growing interest in understanding psychological processes that 

contribute to decision making (McGuire 1976). Over the past thirty years, a large stream of 

experimental studies show that consumer decision making is a highly complex process that 

challenges the assumption of a well-defined preference structure (or utility function) in modeling 

literature (Bettman 1979). New developments in neurosciences such as CAT scans and fMRI 

illustrate that different parts of the brain are active during different parts of mental life (including 

consciousness, emotions, choices and morality) and exact brain regions can be pinned down for 

certain types of decision making (Hedgcock and Rao 2009; Weller et al. 2009).  

Despite the critical role of high-level latent processes in consumer decision making, there 

is little empirical research examining its impact on consumer choice with behavioral data. 

Incorporating these difficult-to-observe process parameters into well-defined quantitative models 

requires a continuous distribution of the latent variables. This can be achieved through latent trait 

analysis, which has received considerable attention in psychometrics and mathematical 

psychology. There are a few early marketing applications discussing latent or unobserved 

variables in survey research (Balasubramanian and Kamakura 1989), coupon redemption (Bawa 

et al. 1997) and cross-selling of financial services (Kamakura et al. 1991) in a single category 

context. Operationally, latent trait is the “person parameter” that has been defined in item 

response theory. It represents the strength of an attitude and captures parameter heterogeneity 

due to individual differences between persons, as opposed to parameter homogeneity in latent 
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class approach. It has two unique advantages over traditional models: to the extent that 

marketing is applied psychology and applied sociology, the latent trait approach is more 

theoretically grounded by investigating the underlying decision process that impacts consumer 

choice; and empirically, a continuous distribution of person parameters usually leads to better fit.   

3. The Empirical Model 

In this research, I adopt a hierarchical multinomial processing tree model with Bayesian 

methods to examine the impact of polygamy on consumer choice while incorporating 

heterogeneity. Multinomial processing tree (MPT) models have been extensively used in 

cognitive psychology for memory testing, perception research and reasoning (see an overview by 

Batchelder and Riefer (1999)). MPT models are discrete choice models that are developed 

exclusively to explicitly measure and disentangle the impact of underlying or latent cognitive 

capacities with panel data resulting from multiple and confounded processes (Ansari, Vanhuele 

and Zemborain 2007). The “structural” parameters represent underlying psychological processes. 

Each MPT model is a re-parameterization of the decision outcome probabilities of the 

multinomial distribution, with each branch of the tree representing a different hypothesized 

sequence of processing stages and leading to a specific decision outcome. Hence, assumptions 

about the psychological processes in a given experimental paradigm can often be cast into the 

form of a processing tree structure in a natural manner (Klauer 2010).  

Consistent with the choice modeling literature, the tree structure begins with a consumer 

choosing among categories (or types or channels), followed by brands and products. However, 

unlike choice models which rely on conditional probabilities to reach to the bottom of the 

hierarchy (i.e., product choice), our latent-trait MPT approach explicitly lets the latent trait 

determine the path to follow in traversing the tree structure. In addition, the latent trait for 
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polygamy is active during every stage of the decision tree. We code polygamy separately for 

channel/type (θc), brand (θb) and product (θp).  Figure 1 shows the structure of the multinomial 

processing tree. Each product category is modeled by separate subtrees of the multinomial model. 

For a given product category, a consumer will first decide whether to choose multiple 

types/channels or a single one, then decide whether to choose multiple brands, and finally 

whether to choose multiple products
2
. Therefore, there will be up to a total of three latent trait 

parameters and eight mutually exclusive decision outcomes (end nodes) for each product 

category. Our model building can be viewed as a three-step hurdling process: as illustrated in Figure 

1, the model starts with observed individual level decision outcome frequencies, with the paths 

leading to the outcomes governed by the latent processes; then, it employs a Probit-link to transform 

individual parameters to population/prior, which is further specified using a hyperprior. Lastly, data 

augmentation is used for easier empirical estimation.   

3.1 Person-Level Model 

Specifically, for product category or subtree k, k = 1, . . . , K, j = 1, . . . , Jk , and consumer 

t, t = 1, . . . , T, the decision outcome/node Ckj  is mutually exclusive and has a frequency nkjt, 

which follows a multinomial distribution with parameters pkjt, j = 1, . . . , Jk,.  For product 

category k, let Nk be the fixed number of responses. Across product categories k, the data are 

assumed to be distributed stochastically independent for each consumer t. In Table 1, an 

overview of the most important symbols is given for easy reference. 

Let pkjt denote the choice probabilities of reaching the end node decision outcome Ckj by 

means of S structural parameters θs, s = 1, . . . , S, each θs being probabilistic and free to vary in 

(0, 1) (Ansari et al. 2007; Klauer 2010): 

                                                           
2
 We conducted robustness checks on the sequence of decision making process (e.g., product first, then brand and 

lastly type) and the results do not vary significantly.  
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���� 	= 	�	�	��
	��),        (1) 

Here, θt is the vector of consumer t’s parameter values θst, s = 1, . . . , S. It represents a sequence 

of latent binary events which determine the path followed in traversing the tree. The choice 

probabilities P(Ckj | θ) sum to 1. We can use a simple EM algorithm for maximum-likelihood 

estimation of the model parameters (Hu and Batchelder 1994). This form can be characterized by 

means of the model’s representation as a processing tree (e.g., Figure 3). Let the number of paths 

ending in decision outcome Ckj of subtree k be Ikj, and let the ith such path be denoted by Bkji. 

The probability that path Bkji is followed by consumer t in traversing the tree is given by: 

�	�����
	��)=  ∏ ��������(1 − �)�����������  ,      (2) 

where askji and bskji are the number of branches on path Bkji that are assigned to parameter θs and 

its complement 1−θs , respectively. The probabilities for a given node are then computed by 

adding the probabilities of all paths that terminate in the respective decision outcome: 

�	�	��
	��)=	∑ ∏ ��������(1 − �)�����������
���
���  ,       (3)  

The vector of person-level decision outcome counts nt = (n11t, . . . , n1J1t , . . . , 

nK1t, .. .,nKJKt ) is modeled by a vector-valued random variable Nt that follows a product-

multinomial distribution: 

�	( � =	!�|��)	= ∏ #$ %�&�'(…&���(
*∏ [�	�	��
��),-��� ]&��(/0��� ,   (4) 

The model from Equation 19 defines the person-level model. In the next sections, we will 

specify the prior distribution, hyperprior distribution, and the Gibbs sampler required for the 

analysis. 

3.2 Prior Distribution  

Ansari et al. (2007) use a logit link to transform parameters from the interval (0, 1) to the 

real line and to model the transformed parameters by a multivariate normal distribution with 
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arbitrary mean µ and arbitrary covariance matrix Σ to be estimated from the data. Klauer (2010) 

employs a similar approach through a probit link and a less informative hyperprior distribution 

with a Gibbs sampler. 

Specifically, the person-level model is re-parameterized by means of new population-

level parameters αst linked to the original personal-level parameters θst via αs = Φ
−1

(θst ), s = 

1, . . . , S, t = 1, . . . , T , where Φ is the cumulative distribution function of the standard normal 

distribution. Let us collect the parameters αst in the vector αt. Across individual consumer t, the 

parameter αt is assumed to follow a multivariate normal distribution with mean vector µ and 

covariance matrix Σ: 

αt ~ N(µ,Σ).                                          (5) 

That is, the person-level model is the multinomial-processing tree model with probit-

transformed model parameters. It allows for separate parameter estimates for each person, but 

the population-level model constrains the individuals’ parameters to be distributed according to a 

multivariate normal distribution with mean and covariance matrix to be estimated from the data.  

3.3. Hyperprior Distribution  

In the Bayesian framework, a hyperprior distribution is required for the population-level 

parameters of the prior distribution with mean µ, which is assumed to follow an independent 

normal distribution with mean zero and variance p = 100,  and a covariance matrix, which is 

assumed to follow a scaled Inverse–Wishart distribution. Using a new set of scale parameters λs, 

s = 1, . . . ,S, they decompose Σ = (σkl) as follows: 

Σ = Diag(λs)QDiag(λs )                          (6)                       

where Q= (qkl) and σss = λs
2
qss. Whereas the correlations ρkl = σkl/1(2��233)	are determined only 

by Q, that is, ρkl = qkl/1(4��433)	. Assuming an Inverse–Wishart distribution for Q with S +1 
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degrees of freedom and scale matrix set to the identity matrix I therefore maintains the desirable 

uniform distribution for the parameter correlations. The parameters of interest are αt, µ, and Σ. 

The following hyperprior distribution results:  

µ ~ N(0S, 100I), 

Q ~ Inverse–WishartS+1(I), 

λ ~ N(1S, 100I),        (7) 

 where 0S and 1S are vectors of dimension S with zero and one, respectively, in each cell.  

3.4 Data Augmentation for the Gibbs Sampler 

The proposed model includes two steps of data augmentation that are required for the 

Gibbs Sampler. First, we augment the decision outcome frequencies nkjt by the path frequencies 

mkjit and collect all path frequencies in the vector m. Second, a different random variable Z is 

assigned to each node. As shown in Figure 2, as the tree is traversed, the upper branch emanating 

from a given node is taken if the associated Z > 0 and the lower branch if Z ≤ 0. Let Z follow an 

independent normal distribution with mean αs with αs = Φ
−1

(θs) and variance 1. From a theory 

point of view, the decision outcomes nodes can be viewed as binary choice points with choices 

driven by unobserved latent variables Zslt exceeding a given threshold or not. For example, the 

choice may indicate whether a consumer’s polygamy is triggered and activated. Since each node 

is assigned to one of the processes postulated by the multinomial model, and the outcome of the 

process determines which choice is made in moving through the processing tree, they provide a 

substantive underpinning of latent processes beyond mere technical convenience. 

Specifically, each person runs through Nk trials for product category (or subtree) k, k = 

1, . . . ,K. Each such trial x, x = 1, . . . ,Nk, defines Rk random variables Zkxrt , r = 1, . . . , Rk , 

where Rk is the number of nodes or decision outcomes in product category k. The vector Z 
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collects all Zkxrt in a fixed order. Each node indexed by k and r is assigned one of the person-level 

parameters αs. Let the number of nodes associated with parameter αs in subtree k be oks . Across 

subtrees k, there are nst =∑k Nkoks random variables Z per consumer with mean αst, consumer t’s 

value on parameter αs . An alternative way to index the ∑t∑s nst elements of Z is therefore as Zslt 

with Zslt being the lth element of those elements of Z that are assigned parameter αst as its mean. 

Furthermore, it turns out that all conditional posterior distributions that are needed for the 

Gibbs sampler, other than the conditional posterior distribution of the individual Zslt, do not 

depend on the order in which the paths occurred, nor on the order in which the nst values of Zslt 

were observed for each s and t (Klauer 2010). Therefore, we can work with order statistics5678 , in 

which the nst variables Zslt appear in ascending order. Let Zo be the vector that stacks the order 

statistics5678 , s = 1, . . . , S, t = 1, . . . , T. The double data augmentation procedure by path 

frequencies m and by Z
o
 allows the posterior distribution of the model parameters to be 

expressed as a standard hierarchical linear regression with the given 56978  as the data, and 

therefore facilitates straightforward adaptation of the well-understood Gibbs sampler for 

analyzing standard hierarchical linear regression models in a Bayesian framework (e.g., Gelman 

and Hill 2007). Thus, the remainder of the model can be analyzed as though it was the following 

linear model: 

     Zt ~ N(Xtαt, I), 

     αt ~ N(µ,Σ),                (8) 

with (µ,Σ) distributed according to the hyperprior specified above and Xt as a design matrix 

containing zeros and ones that simply assigns αst as mean to each Zslt , l = 1, . . . , nst , s = 1, . . . ,S, 

t = 1, . . . , T . 
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To summarize, the double data augmentation and the probit link have two advantages. 

Technically, they allow replacing observed categorical responses by continuous data with an 

underlying linear Gaussian structure (Albert and Chib 1993). More importantly, they provide a 

substantive underpinning of latent processes. 

3.5 The Gibbs Sampler 

A Gibbs sampler is a Monte Carlo–Markov chain algorithm for sampling from the 

posterior distribution of the model parameters given the data n. Let us then re-parametrize the 

parameters αt as follows: 

    αt = µ+βt , 

    βt = Diag(λs )γt .                                        (9) 

The parameter µ is the prior mean of the parameters and the parameters βt are the 

individual-specific systematic deviations from it. The parameters λs are the scale parameters of 

the scaled Inverse–Wishart distribution and the parameter γt is an unscaled version of βt. Let γ be 

the vector that stacks the vectors γt, t = 1, . . . ,T. The Gibbs sampler cycles through blocks of 

parameters. For each block, one sample is drawn from the conditional distribution of the 

parameters of the block given the data and the remaining parameters. The parameter blocks for 

the Gibbs sampler are Q, (Z
o
,m), γ ,λ, and µ. The detailed conditional distributions are given 

below.  

Conditional Distribution of Q 

The conditional distribution of Q given the data and the other parameters depends only on 

the parameters γt. Let S be the sum of cross-products of the γt :  S – ∑ :7:7′;��� , then 

Q| m, Z
o
, γ, µ, λ, n ~ Inverse–WishartT+S+1(I +S),                                  (10) 

Conditional Distribution of (Z
o
, m) 
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The conditional distribution of (Z
o
,m) is sampled from by sampling the conditional 

distribution of m with Z
o
 integrated out, followed by sampling from the conditional distribution 

of Z
o
 given m, n, and the other parameters.  

The conditional distribution of m given the data and the other parameters depends only 

on the data n and the parameters γt, µ, and λ. For each person and decision outcome Ckj , the path 

frequencies mkjit , i = 1, . . . , Ikj , follow a multinomial distribution with parameters nkjt and pi, i = 

1, . . . , Ikj, as defined in Equation 7 (note that θst = Φ(µs + λsγst ), hence pi = pi(µ, γt ,λ)). Thus, m 

follows a product-multinomial distribution: 

m | Q, γ ,µ, λ, n ~ ⊗7�=> ⊗?�=@ ⊗A�=
B

Multinomial (nkjt, (pi (µ, γt,, λ )i=1,…,Ikj)),        (11) 

Consider next the conditional distribution of Z
o
 given m, γ, λ, µ, Q, and n. To derive this 

distribution, consider first the conditional distribution of the (unordered) Z.  Let P be a sequence 

of paths, P = (Pkxt )kxt , path Pkxt being a path of subtree k assigned to individual t ’s trial x, t = 

1, . . . , T , k = 1, . . . , K, x = 1, . . . , Nk . Let ξm be the set of sequences of paths P consistent with 

path frequencies m, that is, with mkj it being the number of trials x with Pkxt = Bkji for each k,j,i, 

and t. By definition of conditional probabilities, the density of Z is: 

f (Z | m, Q, γ ,µ, λ, n) = ∑ f	(5	|	D,E, F, :	, G, H, I)	P	(D	|	E, F, :	, G, H, I),K∊ME        (12) 

The conditional distribution of Z
o
 given the data, the path frequencies m, and the other 

parameters need to be generated only to the point that it is consistent with the path frequencies m, 

and the order information is not required. Let !��N =∑ ∑ ∑ O����	P����
�-Q
���

,-,��0���  normal variates Zslt 

with mean αst truncated from below at zero, !��R =∑ ∑ ∑ S����	P����
�-Q
���

,-,��0���  normal variates Zslt 

with mean αst truncated from above at zero, and !�� − !��N − !��R 	nontruncated normal variates Zslt 

with mean αs. It is sufficient to generate !��N and !��R  truncated normal variates with mean αst and 

variance one truncated at zero from below and above, respectively, as well as !�� − !��N −
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!��R 	unconstrained normal variates with mean αst and variance one for each parameter s and 

individual t.  

Conditional Distribution of γ 

The different γt , t = 1, . . . , T , are conditionally independent, so that they can be sampled 

one after the other for a sample from the conditional distribution of γ . For each person t, the 

conditional distribution of γ t can be derived as a Bayesian regression with data λs
−1

(Zslt −µs), s = 

1, . . . , S, l = 1, . . . , nst, that are independently normally distributed with mean γt and variance 

λs
−2

 and with a normal prior for γt , γt ~ N(0S,Q). Thus, the conditional distribution of γt given the 

data and the other parameters is multivariate normal with mean gt and covariance matrix Gt given 

by  

gt = GtDiag(λs)ut , 

Gt = (Q
−1

 +Diag(nstλs
2
))

−1
,                  (13) 

where ut is the vector of the sums ∑ (T�3�	 − G�	)&��3�� , s = 1, . . . , S. 

Conditional Distribution of λ 

The conditional distribution of λ can be derived as a Bayesian regression with data 

U��R�(Zslt − µs), s = 1, . . . ,S, l = 1, . . . , nst , t = 1, . . . , T , that are independently normally 

distributed with mean λs and variance U��RV(and with a normal prior for λ, λ ~ N(1S,pI), where p is 

the variance of the hyperprior of λs (i.e., p = 100). Thus, the conditional distribution of λ given 

the data and the other parameters is multivariate normal with mean h and covariance matrix H 

given by 

h = Hv, 

H = Diag ( p
−1

 +	∑ !��;��� U��	V )
-1

,                 (14)  

where v is the vector of the terms p
-1

+ ∑ U��	;��� ∑ (T�3�	 − G�	)&��3�� , s = 1, …, S. 
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Conditional Distribution of µ 

The conditional distribution of µ can be derived as a Bayesian regression with data Zslt 

−λsγst, s = 1, . . . , S, l = 1, . . . , nst , t = 1, . . . , T , that are independently normally distributed 

with mean µs and variance one, and with a normal prior for µ, µ ~ N(0S,pI). Thus, the conditional 

distribution of µ given the data and the other parameters is multivariate normal with mean u and 

covariance matrix U given by 

u = Uw, 

U = Diag( p
−1

 +	∑ !��;��� )
-1

,    (15) 

where w is the vector of the sums ∑ ∑ (T�3�	 − W�	G�	)&��3��;��� , s = 1, . . . , S. 

3.6 Implementation 

Rough initial estimates of the parameters µ and Σ are obtained by means of the Monte 

Carlo EM (MCEM) algorithm. For the expectation step, the conditional distribution of βt, t = 

1, . . . ,T , is sampled via a Gibbs sampler for given µ and Σ and given the data. The Gibbs 

sampler samples from the relevant conditional distributions specified above with µ and Q fixed at 

their current estimates, and with λs fixed to one, s = 1, . . . ,S, so that Σ = Q and βt = γt . In the 

maximization step, µ is then estimated as the mean of the sampled βt, and Σ as the covariance 

matrix of the sampled βt. Initial overdispersed values of parameters βt and µ are then obtained by 

sampling from multivariate t -distributions with three degrees of freedom with mean given by 0S 

and the MCEM estimates of µ, respectively, and covariance matrix given by the MCEM estimate 

of Σ and by Σ/T, respectively. Initial values of λ were sampled from a uniform distribution on the 

interval (0.5, 1.5), and initial values γt were set to γst = βst/λs, using the initial overdispersed 

values of parameters βt. 

4. DATA 
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The data needed for this empirical study are categories that are seemingly disparate, or 

rather, snapshots of consumer life experiences that cover a wide range of product categories. One 

suitable dataset is the National Consumer Survey. Therefore, I use the Simmons National 

Consumer Survey, which is filled by a nationwide sample of 5,014 individuals in the United 

States in 2006. It is considered one of the broadest and deepest surveys of American consumer 

behavior available. Consumers were asked to report their product purchases and brand 

preferences for a wide range of categories. The selection criteria for the categories used in this 

essay are: 1) the product category is among the top 10 TNS/Kantar most advertised categories, 2) 

data in the category is complete, and 3) the combinations of the product categories pass the 

pretest of “disparateness”
3
. The categories that satisfy the criteria above are: Financial 

Investments (including fixed income, equity and others), Soft Drinks (including carbonated diet, 

carbonated non-diet, noncarbonated diet and noncarbonated non-diet) Automobiles (including 

SUVs, compact, midsized, full-sized, sports, pickups, vans, luxury cars.), and Cell Phone Plans 

(including pre-paid, family-share and individual-monthly).  Note that these categories cover 

durable, high involvement, long purchase cycle options as well as nondurable, low involvement, 

FMCG options, thereby giving greater variations in degree of dissimilarity and distinctiveness 

(i.e. truly disparate). In each category, respondents report the up to four most recent purchases 

with respect to types, brands and products. Similarly, I further trim the data to include 

individuals who at least have one purchase in each respective category. Although the number of 

observations in these categories is as many as we would want to have, the consumer survey is, by 

far, the only study available in the field that captures consumption patterns across a variety of 

                                                           
3
 The pretest asks a random sample of 30 respondents to rate how similar or dissimilar they think the product 

categories are on a 1-7 scale. The combination of categories chosen has an average of 1.83 (with 1 being most 

disparate).  
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disparate categories. It allows greater examination of underlying psychological processes without 

compromising statistical power. 

 To ease the concern of a limited number of observations, we use a media diary that is 

filled by the same 5,014 individuals during the same time when the National Consumer Survey 

was issued in 2006
4
. The media diary is from Universal McCann’s Media in Mind Diary 2006 

and consists of self-reported media activities -- i.e., computer (including Internet), television, 

radio, or print (newspapers and magazines). This media diary is conducted annually with a 

randomly-selected, nationwide sample in the United States, and is considered the largest survey 

on consumer media consumption conducted by any media agency. The timing intervals in the 

diary are defined by half-hour time slots. Thus, at any given time, a panelist could consume one 

or a combination of these alternatives (i.e., multiplexing). Respondents report their activities for 

each media channel every half hour for seven consecutive days, except for the time periods from 

1AM am-3AM and 3AM-5AM, which are each recorded as two individual observations. We 

further trim the diary to include 1,775 individuals who consumed media activities at least once 

during any half-hour slot in the observation window. A sample data structure is presented in 

Figure 5. For each respondent, we also have selected demographic information including age, 

gender, household income, household size, and location information such as whether the 

respondent is from an urban or rural area.  

Figure 3 provides a snapshot of our data structure and Table 2 reports detailed descriptive 

statistics for each product category. In the Cell Phone Plan category, almost zero percent of 

consumers hold multiple types of plans, which is sensible because consumers rarely belong to 

both an individual plan and a family plan. Polygamy happens more at the brand level and 

product/service level (e.g., ring tones, caller IDs, etc.). Note that Financial Investment is a 

                                                           
4
 The Media Consumption category is also pre-tested for “disparateness” with other product categories.  
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special category because information on brands and products are confidential. Nevertheless, 

respondents report detailed investment sub-types/formats. For instance, fixed income includes 

six formats: treasury bills, savings bonds, U.S. government bonds, municipal bonds, money 

markets and corporate bonds. Equity includes three formats: company stocks, common stocks 

and equity mutual funds. Others include four formats: other securities (e.g., futures and 

derivatives), investment collectibles, international investments, and trust funds. Specifically, 37.8 

percent of the 3,014 respondents hold multiple types of financial investments, with an average of 

2.17 types. 44.9 percent of the respondents hold multiple sub-types/formats, with an average of 

3.06. Clearly, there is a considerable group of single-type investors exhibiting polygamy for 

different investment formats.  Furthermore, we observe significant variation in polygamy across 

product categories (trees), and across tree levels. For example, in the Soft Drinks category, there 

are four major brands (Coco-Cola, Pepsi, Dr. Pepper and other brands) as in Dubé (2004) and 96 

products/SKUs (23 Coco-Cola products, 20 Pepsi, 27 Dr. Pepper and 26 other brands). 76.5 

percent of all 4,452 consumers purchase multiple types within the last seven days, with an 

average of 2.42 types, 72.8 percent purchase multiple brands with an average of 2.79,  and 89 

percent purchase multiple products with an average of 7.69. In a nutshell, summary statistics 

suggest that this data is sparse with large variations across categories (trees) and across decision 

stages (tree levels). It is also sensible and reflects reality (that less polygamy happens for specialty 

retailing products such as Cell Phone Plans, and more so for convenience products such as Soft 

Drinks).   

5.  RESULTS 

5.1 Model Selection and Goodness-of-Fit Measures 

The deviance information criterion (DIC) is a Bayesian analogue of information 

measures such as Akaike’s information criterion in that it comprises a term quantifying lack of 
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model fit and a term penalizing model complexity. The latter term, pD, is of interest in its own 

right in that it is interpreted as the effective number of parameters. It is smaller than the actual 

number of parameters to the extent to which the model parameters are constrained by 

dependencies in the data or the prior. DIC can be computed on the basis of the output from the 

Gibbs sampler. A point estimate of the parameter estimates θt is also required, and I used the 

maximum likelihood estimates from separate analyses conducted for each individual t. The 

model with the smallest DIC value strikes the best compromise between fit and complexity in the 

metric defined by DIC. I will report DIC in Section 6 where I compare the latent trait approach 

with the latent class approach. 

5.2 Parameter Estimates 

We obtain parameter estimates for each individual across all product categories (except for 

media) and summarize them in Table 3. Table 3 shows the posterior percentiles for the parameters 

(on the probability scale) and the posterior medians of the Probit-transformed parameters. The rows 

present the product categories or subtrees, whereas the columns present the latent trait parameter θ’s 

at different levels of the tree. A high θ (close to 1) denotes a high level of polygamy. Several aspects 

of Table 3 are noteworthy. First, the posterior medians are able to reproduce the underlying 

population means with little bias. Second, there are variations of the magnitude of polygamy across 

tree levels, as well as across trees (product categories). Third, the relatively high standard deviations 

suggest evidence for large individual differences in the impact of polygamy. Let us take three real 

data records for illustration purposes: ID 1227670 is a young female from Los Angeles with all of her 

parameters close to 1 (e.g., 0.5, 0.7, 0.8, 0.7, 0.9,…). This suggests that she is a “Polygamist” that 

would love to enjoy offers of multiple products, brands and types. Managers should label her as a 

desirable candidate for cross-selling and attempt to provide a large assortment for her selection. In 

contrast, ID 1162260 is a senior male from New York City with low parameter estimates (e.g., 0.0, 
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0.1, 0.2, 0.1, 0.3,… ). He is a “Monogamist” that exhibits high inertia in purchase patterns across 

consumption scenarios. Managers may want to avoid going through expensive cross-selling efforts 

but rather deepen a strong long-term relationship with him with just one type of product or service. 

Most consumers are like ID 1357204, who is being a “Wanderer” that is polygamous in some 

situations, but not in others (e.g., 0.1, 0.3, 0.5, 0.8, 0.9, …). Our individual-level results on latent 

traits not only offer an empirical-based, theory-grounded process for understanding individual 

variations in cross-category decisions, but also provide a new basis for segmentation and profiling to 

generate important managerial insights on coordinating across categories and across different types 

of customers, as discussed in Section 3.6.  

5.3 Model Comparison: Latent Trait versus Latent Class  

We now compare the results from the latent-trait model with the results from the latent-

class MPT model. The latent-class version of the multinomial processing tree is given as follows: 

pkjt = pkj(θt), where θt is the vector of the S parameter values by person t. Allowing for different 

parameters for each person t, the vector of person-wise category counts (n11t, . . . , n1J1t , . . . , 

nK1t, .. .,nKJKt )’ is still modeled by a vector-valued random variable N that follows a product-

multinomial distribution 

�	( � =	!�|��)	= ∏ #$ %�&�'(…&���(
*∏ [��� 	(��),-��� ]&��(/0��� ,                         (16) 

Let the model parameters follow a distribution with probability measure µ, then 

�	( = !)	= X�	( = !|Y)ZG(Y),                                                                       (17) 

where �	( = !|Y)is given by the right side of Equation 16, in which the fixed values θt are 

replaced by the variable of integration, η, and nt is replaced by n. Therefore, for T consumers, we 

have: 

�	(( �, … ,  ;) = (!�, … , !�))	= ∏ {;��� X�	( � = !�|Y)ZG(Y)},                 (18) 
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Let µ be distributed over a finite number C of fixed parameter vectors θ1, . . . , θC. If λc = 

µ({θc}) is the size of class c, the model equation simplifies to: 

�	(( �, … ,  ;) = (!�, … , !�))	= ∏ {;��� ∑ W]�	( � = !�|�])^
]�� },         (19) 

This means that each consumer t is assumed to belong to one of the C latent classes of 

proportional sizes λc. In a latent-class multinomial model, the category counts jointly follow a 

mixture of product-multinomial distributions, and each category count considered individually 

follows a mixture of binomial distributions. Furthermore, it is well known that mixtures of 

binomial distributions with parameters pc and N and mixture coefficients λc are identified if and 

only if N >= 2C − 1. A simple EM-algorithm can then be devised for the maximum-likelihood 

estimation of latent-class multinomial models.  

Table 4 shows the model fit statistics for both the latent-trait model and the latent-class 

model. Smaller DIC values suggest that the proposed model outperforms the latent class model 

significantly. Following Klauer (2006), two test statistics, termed M1 and M2, are considered for 

mean structure testing, and another two test statistics, termed S1 and S2, for variance-covariance 

structure testing. All four statistics are asymptotically distributed as χ
2
 when the degrees of 

freedom are larger than zero. Table 5 shows the detailed results from the latent class model. 

Parameter estimates for the Cell Phone Plans and Media Consumption category are not identified 

in the latent class framework because the probability is trivially close to zero (or one) so that 

there is not enough variation in the data for the model to distinguish multiple segments. In 

addition, not surprisingly, all the other categories seem to have two distinct classes: the 

polygamous class, and the single class. While we observe significant differences across tree 

levels and across trees, there are quite a number of places where the  latent-class approach is not 

able to accurately capture the coefficients to reflect the true population mean (as indicated by the 
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zero values), indicating a poor job of capturing underlying distribution with the discrete 

representation of consumer heterogeneity.    

6. SEGMENTATION ANALYSIS  

We conducted a finite mixture analysis to segment the consumers based on the collection 

of individual θ parameters (θc, θb, θp) across categories, with θ being free to vary between (0,1). 

Such continuous representation of consumer heterogeneity allows one to achieve value-based 

segmentation where consumers are grouped based on their decision processes rather than binary 

observed behavior, 0 or 1. It both provides richer theoretical support and better empirical fit 

with continuous distribution. Table 6 summarizes the segmentation results. The three segments 

“Polygamist”, “Monogamist” and “Wanderer” roughly each represent 20 percent, 10 percent 

and 70 percent of the data respectively. Profile analysis shows group differences are significant. 

As illustrated in the previous example in Section 5.2, the Polygamist segment shows high θs 

across decision tree stages and categories, whereas the Monogamists show the opposite. The θs 

for the Wanderer segment lie in between.  

Next, we perform two types of out-of-sample predictions: customer-based and 

product/category-based. For the customer-based prediction, the idea is to find customers that 

behave similarly and use their parameters to predict the decisions of the holdout sample (15 

percent). For product/category-based prediction, the assumption is that customers may exhibit 

similar behavior across multiple categories (Ainslie and Rossi 1998). For example, if a customer 

is price sensitive in the toothbrush category, then he may be sensitive to the toothpaste category, 

or even the clothing category. Specifically, we use parameters from three of the five categories 

to predict outcomes of the other two categories and report the average hit rates. Table 7 shows 

hit rate by segment using both types of prediction. In summary, while the latent trait model is 
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not designed for prediction (but rather for assessing the underlying processes), the hit rates still 

seem reasonable (more than 60 percent), although it is much harder to predict decisions of the 

Wanderer segment as compared to the Polygamist and the Monogamist segments which exhibit 

more consistent behavior across categories. In addition, customer-based prediction yields better 

accuracy than product/category-based prediction. This finding relates back to the intuition that 

getting at the “why consumers did it” by looking at the underlying processes provides greater 

conceptual and empirical support as compared to the “what consumers did” question in the 

traditional behavioral segmentation approach.   

7.  DISCUSSION AND CONCLUSION 

Much of marketing has focused on a consumer’s choices and preferences in individual 

product categories or a set of closely related product categories. The reality is that consumers 

shop around a globe of categories that are much more diverse and complex than the traditionally 

defined “market basket”. This research takes a first step in modeling a complete picture of 

consumer decision problems by examining consumption across seemingly disparate product 

categories to advance understanding in both dimensions of customer behavior: the breadth of 

their consumption portfolio and the depth of their latent decision processes. While traditional 

research on multi-category choice models and latent class suffer from data and modeling 

limitations that prohibit deeper investigation of the underlying process that governs consumer 

decision making, this research empirically examines consumer choices across seemingly 

disparate product categories using a latent trait hierarchical multinomial processing tree model. 

In doing so, this paper contributes to the consumer decision literature in three ways: 1) 

theoretically, the latent-trait approach provides rich support in examining the high level 

processes; 2) methodologically, the relative merits of models with continuous versus discrete 

representations of consumer heterogeneity are discussed; and 3) substantively, new insights on 
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value-based targeting and profiling are presented with respect to managing across seemingly 

disparate product categories. 

 The power of the latent trait model lies in its ability to infer and assess the impact of 

underlying processes using behavioral data without necessarily augmenting survey or 

experiments on consumer attitudes. Segmentation and prediction analysis suggests that the 

approach of categorizing consumers as collections of latent process parameters provides better 

theoretical and empirical support for value/process based segmentation and targeting exercise.   

The idea of modeling individual latent processes is not bound by a particular context, but 

is applicable to a broader phenomenon that is generally manifested across a wide range of 

settings and situations. It would be especially intriguing to study the impact of latent processes 

in the online world where firms may have access to large-scale behavioral data across categories 

and situations. Future research can look at how firms can improve current recommendation 

systems based on inferred consumer preferences across categories, and how brand constellations 

are formed in social media (e.g., a consumer may “like” many seemingly unrelated brands on 

Facebook).   
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TABLE 2: Summary Statistics for Product Category Consumption 

 

Category 
Sample 

Size 

No. of 

Types. 

No. of 

Brands 

No. of 

Products 

% of Type 

Polygamy 

% of 

Brand 

Polygamy 

% of 

Product 

Polygamy 

Cell Phone 

Plans 
3,327 3 9 12 0.0% 3.7% 76.7% 

Financial 

Investments 
3,014 3 13 - 37.8% 44.9% - 

Automobile 3,646 8 42 477 50.8% 49.8% 61.3% 

Soft Drinks 4,452 4 4 96 76.5% 72.8% 89% 

Media 

Consumption 
4,218 4 4 - 93.1% 95.8% - 

 

 

 
TABLE 3: Parameter Estimates from the Latent Trait Model 

 

Category 

(Tree)  

θc  

(PM

a

)  
SD

b
  

θb  

(PM

a

)  
SD

b
  

θp  

(PM

a

)  
SD

b
  

Cell Phone 

Plans  
.042 .057 .048 .098 .840 .201 

Financial 

Investments  
.242 .193 .345 .165 - - 

Automobile

s  
.537 .235 .515 .257 .731 .239 

Soft Drinks  .884 .713 .872 .293 .948 .246 

Media 

Consumptio

n  

.912 .925 .957 .938 - - 

Note:  aPM = Posterior Median (mean across simulated data sets). 
b25 Posterior Percentile  
C75 Posterior Percentile 
dStandard Deviation of posterior (mean across simulated data sets). 
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TABLE 4: Model Fit and Comparison  
 

Category DIC 

  

Latent 

Trait Latent Class  

Financial Investments 3907.75 5307.94 

Automobile 2953.54 9063.23 

Cell Phone Plans 3384.22 4665.33 

Soft Drinks 5422.93 10822.35 

Media Consumption    5821.31            10239.43 
 

 

TABLE 5: Parameter Estimates from the Latent Class Model 
 

Financial Investments (2 classes)  

Parameter Class1, Weight 0.579 Class 2, Weight 0.421 

  Coefficient 95% CI Coefficient 95% CI 

θ1 0.000 [-0.049    

0.049] 

0.893 [0.878    

0.908] 

θ2 0.043 [0.038    

0.047] 

1.000 [0.941    

1.059] 

          

Goodness-of-

Fit 

statistics:       

M1 0 M2 0  

S1 0.279 S2 0.759  

Automobile (2 classes)  

Parameter Class1, Weight 0.600 Class 2, Weight 0.400 

  Coefficient 95% CI Coefficient 95% CI 

θ1 0.847 [0.831   0.864] 0.000 [-0.052   

0.052] 
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θ2 0.830 [0.813   0.847] 0.000 [-0.052   

0.052] 

θ3 1.000 [0.957   1.043] 0.034 [0.019   0.05] 

Goodness-of-

Fit 

        

M1 0 M2 0.000  

S1 0.774 S2 1.508  

Soft Drinks (2 classes)  

Parameter Class1, Weight 0.741 Class 2, Weight 0.259 

  Coefficient 95% CI Coefficient 95% CI 

θ1 0.885 [0.87    0.9] 0.422 [0.378    

0.466] 

θ2 0.982 [0.957    

1.007] 

0.000 [-0.108    

0.108] 

θ3 1.000 [0.958    

1.042] 

0.575 [0.525    

0.624] 

Goodness-of-

Fit 

        

M1 0 M2 0.002  

S1 0.149 S2 0.832  

Cell Phone Plans (Not Enough Variations to Distinguish Multiple Segments) 

Media Consumption (Not Enough Variations to Distinguish Multiple 

Segments) 
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TABLE 6: Results from Latent Trait Segmentation 
 

Parameters 

Class 1: 

Polygamist 

(19.2%) 

Class 2: 

Wanderer 

(71.5%) 

Class 3: 

Monogamist 

(9.3%) 

θ1_cell 0.803 0.466 0.041 

θ2_cell 0.763 0.393 0.038 

θ3_cell 0.872 0.000 0.000 

θ1_auto 0.863 0.469 0.304 

θ2_auto 0.885 0.469 0.284 

θ3_auto 0.892 0.552 0.000 

θ1_finance 1.036 0.478 0.165 

θ2_finance 1.115 0.489 0.210 

θ1_softdrinks 1.182 0.571 0.000 

θ2_softdrinks 0.896 0.637 0.000 

θ3_softdrinks 0.948 0.000 0.000 

θ1_media 0.917 0.566 0.341 

θ2_media 0.964 0.593 0.238 

 

 

 
 

TABLE 7: Out-of-Sample Prediction Results 
 

Segment Polygamist Wanderer Monogamist 

Customer-based 

Prediction 
74.7% 61.2% 65.9% 

Product-based 

Prediction 
65.4% 52.0% 63.3% 
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FIGURE 1: Multinomial Process Tree Representation of the Latent Trait Model 

  

 

FIGURE 2: Multinomial Process Tree Representation of the Latent Trait Model with Augmented 

Data 
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FIGURE 3: Sample Data Structure (Media Consumption Category) 

 

 

 

 

 

 

 

 

 


